Writing SeSQL queries

Contents

1 Short queries and full queries
1.1 Shortqueries L 1
1.2 Fullqueries i 1

2 General rules 1

3 Queries by type
3.1 IntField
32 StrFieldo
33 ClassField
34 DateField
3.5 DateTimeField,
3.6 IntArrayField.
3.7 FullTextField

[SSIN NS BN S RN S BN (S RN S IR \S I 8]

4 Sorting with SeSQL
4.1 Problematics L
4.2 General syntax
4.3 Specialordering
44 Defaultorder

W W W W W

[N

5 Brains

1 Short queries and full queries

SeSQL can be queried in two modes : short queries and full queries.

1.1 Short queries

Short queries are designed to retrieve a small amount (like 50) recent (according to
any date field indexed by SeSQL) content matching the given criteria in an extra-fast
manner.

It’s typical used for a portlet, infobox or similar widget.

It has several limitations :

e it doesn’t count the total amount of content matching the query ;

e it must be used on a query sorted by a date field ;

e several optimizations will be disabled if the content types spawn on more than
one SeSQL table (see the typemap).

1.2 Full queries

Full queries (sometimes called long queries in the code or documentation) are a more
common search. They are a bit slower than short queries, especially if there is a lot of
content matching, but propose additional features :

e cxact count of matching items ;

e stable pagination support (even if content is inserted or modified between the
query and when the page is displayed, the pagination will remain stable) ;

e support of sorting by relevance, if the query includes a full-text search.

2 General rules

Making queries with SeSQL is made by calling the shortquery or longquery
function with a Django Q object.

All the general rules of Q objects still work : using ~ to make a negation, | to make
OR queries, & to make AND queries.

The kind of supported queries depend of the index types.

3 Queries by type
3.1 IntField
e defaultis=(id = 12forid == 12);

° 1t,_ gt,_ gte,_ ltefor<,> <=>=((id__1t = 12forid < 12)

e _ intotestifit’sinsidealist (id__in = (12, 13));
e _ range= (min,max) to testif it’s inside the range (1d__range = (12,

42))

3.2 StrField

e defaultis = (workflow = "published");

e _ intotestifit’sinsidealist(workflow__in == ("published", "pending"))
3.3 ClassField

e defaultis =(objclass = Article);

e _ intotestifit’sinsidealist(objclass_ _in == (Article, Photo))

)

3.4 DateField
e defaultis = (date = now () for today);

e 1t,_ gt,_ gte,_ 1ltefor<,><=>=(id__1t = now () for before
today) ;

e _ range=(min,max) to testif it’s inside the range.

3.5 DateTimeField

e like DateField, only different for ordering.

3.6 IntArrayField

e default is contains (authors = 12 for contains the author 12) ;

e _ all for contains all of a list (authors__all = (12, 13) for contains
both authors) ;
e __ any for contains any of a list (authors__any = (12, 13) for contains

at leats one of the two authors) ;

3.7 FullTextField

e _ containswords to test for inclusing of all the given words (fulltext___containswords
= "presidential elections in france");

e __ containsexact totestforaspecific sentence (fulltext_containsexact
= "france 2");

e _ matches to test with a !PostgreSQL full-text query string (which can con-
tain & for and, | for or, ...) (fulltext_matches = "presidential |
legislative & elections");

e _ like tomatch with a SQL like (fulltext_like = "fra%").

4 Sorting with SeSQL

4.1 Problematics

SeSQL needs the sort order to perform various optimization. It must be known early in
the process of deciding which heuristics to use.

4.2 General syntax

The sort order must be given as a second, optional, *order’ argument of the methods.
For example

shortquery (Q(classname__in = (’'Article’, ’'PaperPage’)) &
Q(fulltext_ containswords = ’python postgresqgl’),
order = (’'-publication_date’, ’'page’))

The order argument must be a list of field names, on which sorting makes sense
(you can’t sort of full text indexes for example). If a field is prefixed by “-” it’ll use a
descending order (defaut is ascending order).

4.3 Special ordering

SeSQL support special ordering modes, prefixed by sesgl_. Only one is imple-
mented in this version :

sesql_relevance will sort by relevance of the full text query on the primary full text
index. Will only work if the query includes a filter on the primary full text index.
Will disable most heuristics, so be careful to not overuse it.

4.4 Default order

The default search order is taken from the DEFAULT_ORDER varibale in
config.py.

5 Brains

Since version 0.15, SeSQL can, instead of returning full objects constructed through the
ORM, expose “brains” (the term comes from Zope catalog). Brains are taken directly
from SeSQL table, and are much faster to retrieve, and usually take much less memory.

To get brains, you need :

1. To specify the name of fields (sesql indexes, postfixed with _text for the full-
text fields) you want to fetch, in the constructor of the SeSQLQuery object, or as a
keyword parameter of the shortquery and longquery functions.

2. On the resulting SeSQLResultSet, call the brains () methods, which will
return an iterator of dictionaries.

	Contents
	1 Short queries and full queries
	1.1 Short queries
	1.2 Full queries

	2 General rules
	3 Queries by type
	3.1 IntField
	3.2 StrField
	3.3 ClassField
	3.4 DateField
	3.5 DateTimeField
	3.6 IntArrayField
	3.7 FullTextField

	4 Sorting with SeSQL
	4.1 Problematics
	4.2 General syntax
	4.3 Special ordering
	4.4 Default order

	5 Brains

