
SeSQL extra features

Contents

1 Text highlighting
SeSQL supports basic text highlighting. There is a highlighting function, which takes
two parameters : a text and a list of words. It’ll return a list of matching positions, as a
triplet (begin, end, word number).

For example

>>> from sesql.highlight import highlight
>>> highlight(’sesql : full text search, with text highlight’,

[’sesql’, ’text’])
[(0, 5, 0), (13, 17, 1), (31, 35, 1)]

The text given to the highlight module must have been preprocessed first with the
cleanup function.

If you’re using different cleanup or dictionaries for different indexes, you can spec-
ify which index configuration to use with the index parameter of the highlight func-
tion.

2 Dependency tracking

2.1 The problem
SeSQL supports composite indexes, for example, indexing the name of the section of
an article within the article, the section being a related model.

Now, if the name of the section is changed, you’ll probably want to reindex all
content within the section. That can be a lot of content.

2.2 How to specify dependencies
On each of your Django models, you can implement a method named

get_related_objects_for_indexation

This method doesn’t take any parameter (except the self, of course), and should
return a list of related objects to reindex when the self changed.

The list can either be a list of (classname, id) tuples, or a list of Django
objects.

1

2.3 The daemon
Because there could be a lot of related objects to reindex, they won’t be reindexed
instantly. They’ll be inserted in a simple table, called sesql_reindex_schedule,
just as (classname, id, date).

A daemon, available in the daemon/ directory of SeSQL, will then process the
reindexation, chunk by chunk (100 by 100 by default), waiting some time (2 minutes
by default) between two chunks. This will allow the content to be up-to-date in a mater
of minutes (or hours, if you really have a lot of content), without being a too heavy
burden for the live performance of the system.

You can change the size of a chunk and the delay to compromise between the
acceptable delay in reindexing and the system load.

3 SeSQL admin
By setting ENABLE_SESQL_ADMIN to True in the configuration file, you’ll be able
to use sesql:<index_name> in any Django query, especially in the search field to
use in the admin model. For example using :

search_fields = [’sesql:private_index’]

In the ModelAdmin for a model will make Django admin look into SeSQL field
called private_index whenever the users of the admin uses the search feature.

This feature is functional and stable, but not totally optimized and uses an heavy
monkey-patch (susceptible to break with newer Django versions). It is therefore dis-
abled by default.

4 Search history

4.1 General idea
The general idea is to collect information about searches done by users of the site, and
to be able to later on suggest related searches to perform.

Three factors are taken in consideration on each search :
1. The number of the results the search gave (a small amount is probably a typo or

spelling mistake, for example).

2. The number of times the query was performed.

3. The freshness of those queries (SeSQL was initially made for a newspaper site,
http://www.liberation.fr , and in the world of newspapers, freshness is an important
issue).

From those three factors, a weight is computed, allowing web developers to build
additional features on top of that.

Please note that all the data are totally anonymized inside SeSQL search history
tables.

4.2 The process
The process works in three steps :

2

http://www.liberation.fr

1. When a query is performed, the code making the query can ask SeSQL to his-
torize the search. It is inserted into a temporary table, in a raw form.

2. Regularly (typically, every day, but could be even more frequent) a cron task (as
a manage.py command) is executed to process the information from the temporary
table, and insert it in two other tables :

1. A table of unprocessed searches, very similar to the initial one, which
additional indexes, that can be used for datamining or any other purpose.

2. A table of search statistics, where similar searches are aggregated and
given a score.

4.3 What can be done from the data
The data can be used as you want to. You could make a portlet with the best scored
searches on the homepage of your site, and just use them in the back office to under-
stand how people use your site.

One feature that is currently under development is to suggest alternative searches
(typically in case of mispelling) looking at searches with a high score and similar
phonex. This code is partly implemented for the french language only.

5 Benchmarking tool

5.1 Summary
A small benchmarking tool is provided with SeSQL to allow yourself to test your spe-
cific configuration and request patterns.

5.2 Disclaimer
There are three types of lies : lies, damn lies and benchmarks. Don’t give any absolute
value to the results you obtain, and be aware that reality may be significantly distinct
from benchmarks.

5.3 Concept of the benchmark tool
The SeSQL benchmark tool works by running threads performing operations like short
queries, long queries and indexation. Each of those threads has a tight loop in which in
a perform one operation, and then wait a bit, before doing another one.

You can configure how many threads of each kind are used, and how long they wait
between each operation.

5.4 Query file
For the short queries and long queries threads, you must provide a query file. A query
file is a file with a Q expression on each line, for example something like :

Q(classname=’Article’) & Q(fulltext__containswords="search engine sql")
Q(classname__in=[’Article’, ’Blog’]) & \
Q(fulltext__containswords="search engine sql")

3

5.5 Syntax examples
For a 10 minutes benchmark of a single thread doing continuous queries :

./manage.py sesqlbench --queryfile=queries.txt --duration=600

For a 10 minutes benchmark of 4 threads doing continuous queries :

./manage.py sesqlbench --queryfile=queries.txt --duration=600 \
--short-threads=4

For a 10 minutes benchmark of 2 threads doing continuous short queries and one
doing long queries :

./manage.py sesqlbench --queryfile=queries.txt --duration=600 \
--short-threads=2 --long-threads=1

For a 10 minutes benchmark of 2 threads doing continuous short queries and 1
thread doing regular, but not continuous, reindexation :

./manage.py sesqlbench --queryfile=queries.txt --duration=600 \
--short-threads=2 --index-threads=1 --index-delay=0.5 \
--index-type=Article

4

